Zaktad Mikroinformatyki uﬁjﬁa’f'&s
i Teorii Automatow Cyfrowych ‘“f’%* _\.
\-.,.T\Eﬁ_;-

Programming in Assembler

Laboratory manual

Exercise 8 (v.2)

MASM x64 —-console application in Visual Studio 2012/2013

© 2015 Piotr Czekalski, Piotr Czekalski (edt.)

LAB PIA
Ex.8. MASM x64 —console application in Visual Studio 2012/2013

Exercise goal:
Students get familiarized with x64 programming in pure assembler code, using Visual Studio 2012/2013 -
by building sample Windows console application.

1. x64 Assembler features.
Visual Studio 2013 contains latest Macro Assembler compiler in both x86 (32 bit) and x64 (64 bit) versions.
The compiler files are ml.exe and ml64.exe respectively.
Regarding the previous releases of the assembler it is necessary to know that while writing applications for
x64, a different approach is required:
e there is no inline ASM support,
e the call and return is different schema than x86 functions (as in C++), seel lab 9 instruction for full
details, sample is provided below:
e up to four arguments are passed through registers RCX, RDX, R8, R9 (for Integer), XMMO0-XMM3
when floating point, the above is passed on stack, in case of mixed call, arguments are passed
positional-mixed, see example:

func3 (int a, double b, int ¢, float d);
// a in RCX, b in XMM1, ¢ in R8, d in XMM3

e return values are returned regarding its size: 64bit in RAX, 128bit in XMMO, bigger by pointer
(structure) in RAX

Page 2 of 15

LAB PIA
Ex.8. MASM x64 —console application in Visual Studio 2012/2013

2. Installing & using MASM:
Installing the MASM does not require any additional steps than installing of the Visual Studio 2012/2013
with C++ compiler support. The useful tool to colorize the syntax of the assembler source code is available

as the plugin, currently for Visual Studio 2012 only: http://asmhighlighter.codeplex.com/.
No additional tools are required.

Page 3 of 15

LAB PIA

Ex.8. MASM x64 —console application in Visual Studio 2012/2013

3. Creating simple application from scratch:

To start programming it is necessary to follow few basic steps.

a) Run Visual Studio and create the Win32 console application:

P Recent
4 |nstalled

4 Templates

Meodeling

Samples
B Online
Name:
Location:

Solution name:

| Basic

New Project

NET Framework 4.5 - Sort by: Default

ows Store

ConsoleApplication] |

ConsoleApplication]

sole Application Visual C++

Win32 Project Visual C++

al studio 21

Search Installed Te

Type: Visual C++

A project for creating a Win32 console
application

Browse...

Click OK then in the following Wizard (see below) do not click “Finish”, click “Next” instead:

Page 4 of 15

LAB PiA
Ex.8. MASM x64 —console application in Visual Studio 2012/2013

D Welcome to the Win32 Application Wizard

These are the current project settings:
& Console application

Click Finish from any window to accept the current settings.

After you create the project, see the project’s readme. txt file for information about the
project features and files that are generated.

= Previous || Mext = || Finish ||

b) Follow to the next wizard window.
In the “Additional options™ leave defaults but check “Empty project”, as presented below:

Application type: Add common header files for:
() Windows application Oan
(®) Console application Cmre
oo
() Static library

Additional options:

Empty project

[Export symbals

[#] Precompiled header

Security Development Lifecyde (SDL)
checks

|<Previms || Mext > ||

Then click “Finish” to create an empty project

Page 5 of 15

LAB PiA e
Ex.8. MASM x64 —console application in Visual Studio 2012/2013 N

c) Your project structure should look like below (see “Solution Explorer”):
Solution Explorer = et w2
@ - @/ Fl=E
Explorer (Ctrl+ P~

olution 'ConsoleApplication’ (1 project)
%/ ConsoleApplication1
¥5 External Dependencies
=y Header Files
5 Resource Files
Source Files

T

rer Class b Motifications

d) Customize the Build rules to enable MASM support. Click [Project>>Build Customization] in the
VS menu then enable MASM support by checking the “masm(.target, .props)” — the list may vary
depending on the installed features:

Visual C++ Build Customization Files ?

Available Build Customization Files:

Mame Path

] imageContentTask(targets, .pr.. $(VCTargetsPath)\BuildCustomizations\imageCententTask.targets
[lc(.targets, .props) S(VCTargetsPath)\BuildCustomizations\lc.targets

masm(.targets, .props) S(VCTargetsPath)\BuildCustomizations\masm.targets

[] MeshContentTask(targets, .pro.. S(¥CTargetsPath)\BuildCustomizations\MeshContentTask.targets
[] ShaderGraphContentTask(targ.. S(WVCTargetsPath)\BuildCustomizations\ShaderGraphContentTask.t:

Find Existing... Refresh List Cancel

Page 6 of 15

LAB PiA
Ex.8. MASM x64 —console application in Visual Studio 2012/2013

e) Configure the project for x64. Run configuration manager (click [BUILD>>Configuration Manager|
in the VS menu then add New configuration:

Active solution configuration: Active solution platform:
Debug v| |Win32

Project contexts (check the project configurations to build or dey i

Project Coenfiguration <Edit...>
Consolefpplication Debug Win32

choose x64 and leave “Copy settings from:” and “Create new project platforms™:

Type or select the new platform:
|

Copy settings from:

‘Win32

Create new project platforms

OK

Page 7 of 15

LAB PiA
Ex.8. MASM x64 —console application in Visual Studio 2012/2013

Your current configuration should look as below:

Active solution configuration: Active solution platform:

Debug W | |;(64

Project contexts (check the project cenfigurations to build or deploy):

Project Configuration Platform
ConsoleApplication Debug xbd

Click “Close” to accept configuration.

Page 8 of 15

LAB PiA il
Ex.8. MASM x64 —console application in Visual Studio 2012/2013 N g%

f) The linker is aware of the entry point, so you need provide the name (the ‘main’ function). You have
to inform it to be able to run the project. To do this, click [PROJECT>>Properties] from the VS
menu then expand “Configuration Properties>Linker” and click on “Advanced” section.

Then open “Entry Point” position, click on “Edit” and write the name of the main function (here just

“main”):
ConsoleApplication Property Pages ?
Configuration: | Active(Debug) v | Platform: | Active(x64) o Configuration Manager...
4 Configuration Properties Set Checksum LS
General Base Address
Debugging Randomized Base Address Yes (/DYNAMICBASE)
VC++ Directories Fixed Base Address
b /G Data Bxecution Prevention (DEP) Yes [/NXCOMPAT)
4 Llncher I Turn Off Assembly Generation No
| E”i’a Unload delay loaded DLL
npu]
Manifest File :"-Joblr::Lc.I:la}r loaded DLL
Debugging e r-ary
5 Merge Sections
ystem ; :
Optimization Targ.et Machine MachineXed ({MACHINE:X64)
Embedded IDL Erofile b
Windows Metadata CLR Thread Attribute
Advanced CLR Image Type Default image type
All Options Key File
Command Line Key Ceontainer
I Manifest Tool Delay Sign
I Librarian CLR. Unmanaged Code Check
I Resources Error Reporting Promptimmediately (/ERRORREPORT:PROMPT) W
b MIDL ._E - = : :
I XML Document Genera | T:tr-::EN‘TI{:z . ii intf . h - dd £ il DLL
B e w € option specifies an entry point function as the starting address for an .exe file or :
< >
oK || cancel | Apply
edit the value providing your ‘main’ function name chosen (an entry point for your application, in
other words, where your code should start) i.e. “main”:
_ 2
Entry Point :
mair|| |
Macros==

then click accept the settings (OK twice on the dialogs as above).

Page 9 of 15

LAB PIA
Ex.8. MASM x64 —console application in Visual Studio 2012/2013

g) Add your x64 assembler source file. To do so, right click on Solution Explorer “Source Files” the
“Add” and the “New item”:
Solution Explorer
- a@ &|l=%

ConsoleApplication1
¥5 External Dependencies
#3 Header Files

Ctrl+Shift+ A

Ctrl+Shift+ X sting ltem... Shift+Alt+A

w Filter
o Yaioa
ITET VIEW
Ctrl+X %’ Resource...

Ctrl+C

Delete

Renarme

Copy Path

Open Command Prompt

Properties Alt+Enter

Motifications

Choose C++ file in Visual C++ section, mind to provide .asm file extension (replace .cpp):
Add New Item - ConsoleApplication1 ? R

4 |nstalled Sort by: Default - : Search [tri+E} P~

-t _ C++ File (.cpp) Visual C++ e il e
Windows Store
ul

Code

HLSL

Data

Creates a file containing C++ source code

Header File (.h} Visual C++

Resource

Utility
Prop
Test

B Online

MName: source.asm

Location: 2\ czekalski\document ual studio 2(oje nsoleApplication1\ConsoleApplicati ~

and click “Add” to accept.

Page 10 of 15

LAB PIA
Ex.8. MASM x64 —console application in Visual Studio 2012/2013

h) Write some simple source file, compile and Run.
Mind the non-leaf function (a function that calls another function which is ‘main’ in this case) need
to reserve enough space on the stack to handle at least 4 arguments (parameters), even if the number
of parameters is less than 4, but also requires to round up the alignment of the stack reservation to
the 16-byte memory boundary. If insufficient stack space is reserved or the 16-byte alignment is not
satisfied, your application may crash.

extrn MessageBoxA : proc

extrn ExitProcess : proc
extern SetConsoleTitleA : proc
extern WriteConsoleA : proc
extrn GetStdHandle : proc

STD OUTPUT HANDLE = -11

.data

handle dg ?

MsBoxCaption db "Sample dialogbox header",0;
MsBoxText db "Hello world",0;

ConsoleText db "Hello, world!"™, O0;
ConsoleTextLen = $-ConsoleText;

Text db "This is title",0;

NumCharsWritten dw ?

.code

main proc
sub rsp, 28h

mov ecx, STD OUTPUT HANDLE
call GetStdHandle
mov [handle], rax

lea rcx, Text
call SetConsoleTitleA

xor r9d, rod

lea r8, MsBoxCaption;
lea rdx, MsBoxText;
XOr ecx,ecx

call MessageBoxA

mov rcx, [handle]

lea rdx, ConsoleText

mov r8d, ConsoleTextLen
mov r9w, NumCharsWritten
call WriteConsoleA

mov rcx, 0;

Page 11 of 15

LAB PIA
Ex.8. MASM x64 —console application in Visual Studio 2012/2013

call ExitProcess
add rsp,28h

main endp

end

1) After Your output should present similar communicate:

1>—————= Rebuild All started:
1> Assembling Source.asmn...
1> lab8.vcxproj -> lab8.exe

—————————— Rebuild All: 1 succeeded,

Project: lab8, Configuration: Debug x64

0 failed, 0 skipped ==========

Page 12 of 15

LAB PiA AT
Ex.8. MASM x64 —console application in Visual Studio 2012/2013 BN

J) Set the breakpoint on the beginning of the ‘main’ function i.e. on the line sub rsp, 28h:

Source.asm H X

.data

dl gword 12345
xCaption db "Sample dialogbox header™,®;
«t db "Hello world"”,®;
xt db "This is ", 8;

.code

main proc

(= sub rs

call se :0leTitled
wor rod
lea ra, loxCaption;

lea Pdh_ eXTL,

mov rox, @:
call ExitProcess

main endp
end

Page 13 of 15

LAB PIA
Ex.8. MASM x64 —console application in Visual Studio 2012/2013

k) Start debugging (click F5), once the code execution stops on the breakpoint enable Registers
window to observe the changes while debugging (click [DEBUG>>Windows>>Registers) then
right-click the Registers window and select options to enable Flags, MMX, SSE etc.:

Select All Ctrl+A
CPU

CPU Segments

Floating Point

MMX

AVX

AVX Float

AVX Double

1) Debug your code.

Page 14 of 15

LAB PIA
Ex.8. MASM x64 —console application in Visual Studio 2012/2013

4. During labs — tasks to compile:

1. Get ready your solution, compile and run sample program.
. Debug and observe memory and registers. To start debugging press F10, to open the Registers
and Memory Windows click “[Debug>>Windows]” in the VS menu when in Debug mode.

. Modify the code according to the tasks given by leader, particularly extend the code by some
simple Windows API functions.

Page 15 of 15

